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DUAL ADAPTIVE CONTROL BASED UPON SENSITIVITY FUNCTIONS

J. A. Molusis, P. Mookerjee, Y. Bar-Shalom

Dept. of Electrical Engineering & Computer Science
The University of Connecticut
Storrs, CT 06268

ABSTRACT

A new adaptive dual control solution is presented
for the control of a class of multi-variable input-
output gystems. Both rapidly varying random parameters
and constant but unknown parameters are included. The
new controller modifies the cautious control design by
numerator and denominator correction terms. This con-
troller is shown to depend upon sensitivity functions
of the expected future cost. A scalar example is pre-
sented to provide insight into the properties of the
new dual controller. Monte-Carlo simulations are per-
formed which show improvement over the cautious con-
troller and the Linear Peedback Dual Controller of
{1] anad (2].

1. INTRODUCTION

Multi-variable systems which are characterized by
uncertain parameters with large random variations are a
difficult challenge for most control design techniques,
The assumed randomness of the parameter variations
often precludes the uge of gain scheduling (non adapt-
ive) control design. Stochastic adaptive control
theory provides a principal design approach for systems
of this type. Exact solutfon of the stochastic prob-
lem with unknown parameters requires solution of the
Stochastic Dynamic Programming equation and this is not
feasible for practical implemeatation. The solution is
known to have a dual effect {1,2] that can be used to
enhance the real-time identification of system paramet-
ers as well as provide good control.

Many suboptimal dual solutions have been suggested

[1,2,5-11). The various approaches which have incor-
porated this dual property can be loosely divided into
two classes. In the first class [5-8], the optimal
control problem is reformulated to cousist of a one-
step ahead criterion to be minimized, augnented by a
second term which penalizes the cost for poor identifi-
cation. This aspproach is attractive due to the analy-
tical tractability of the solution; however, the solu-
tion is based on a one-step criterion and does not
fully exploit the dual property of a multi-step solu-
tion, Padilla and Cruz [14] give a dual control solu-
tion for such a plant by minimizing the control object-
ive function subject to an upper bound in the total
estimation cost. Their objective function includes a
standard control objective function and also a second
constraint term which reflects the sensitivity of the
paramaters to the state of the system. Thus the solu-
tion adjusts itself to exercise better estimation for
such gensitive paramaters within the upper bound. The
second class [9-11) utilizes the stochastic dynamic
programming equation directly and performs lineariza-
tion of the future cost in order to obtain a solution.
Previous control solutions among this second ~lass re-
quire a numerical search procedure which poses diffi-
culties for a practical solution for on-line control
for multivarisble systems.
— _The lingsr feedback dual controller of [1,2] is
*Supported by NASA Anss Research Center Grant NAG 2-
213; Y. Bar-Shalom wvas also supported from Air Force
Office of Scientific Ressarch Grant AFOSR 80-0098.
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based upon a first order Taylor series expansion of the
expected future cost and is called the firsgt order dual
(FOD). It offers some improvement over the non dual
cautious control based upon a one-step criterion. The
results are based upon a simulation model with constant
but unknown parameters. Although the dual control of-
fers some improvement over the cautious controller the
improvement 1s not significant for most practical ap-
plications where the system contains constant parameters
and the objective is to control in steady state opera-
tion., However, for rsndom parameter variations, dual
control can sometimes offer significant improvement
over non-dual controllers [5,9]. The FOD of [1,2] 1s
attractive due to its simplicity (it is comparable to
the cautious control design in algorithm complexity aid
does not require numerical search). The objective of
the present study is to evaluate the cautious control-
‘ler and the FOD for large random parameter variations
modeled as a random walk. Monte-Carlo simulstions are
performed and conditions quantified under which the
dual controller offers significant improvement over a
non-dual cautiocus controller.

The FOD, although offering a reduction in the aver-
age cost, is found to be unacceptable in many cases.
This i{s actributed to the sensitivity of the expected
future cost vhenever the system is characterized by
limited controllability. A second order expansion of
the linearization procedure of [1,2] is presented to
account for this sensitivity. This new second order
dual controller (SOD) inherently includes a robustness
property in that the controller accounts for sensiti-
vity of the expected future cost due to parameter esti-
mates and their uncertainty. Simulatioans are presented
which show the improvement of the SOD over the cautious
controller and the FOD. This SOD uses a Newton type
search procedure snd is developed for multi-variable
systens. One of the main advantages of the SOD pre-
sented herein is that it modifies the cautious control-
ler with a numerator "probing" term and a denominator
correction term. Although the SOD is still considered
too complex for practical implementation, the structure
of the control solution is in a form which permits
practical design changes to the cautious controller to
include the dual properties.

Section 2 gives the problem formulation. The ap~

proximate dual controller for the multi-variable input- .
output system is developed in Section 3. Section 4 o
analyzes this dual controller for a scalar example with ®

one unknown paramstar. Section 5 concludes the paper. "“"

2. PROBLEM FORMULATION e

The multivariable system under investigation is .~':-

PANLE

x(k+1) = c(k) + B(K) u(k) (2.1 N

whera c(k) is an unknown vector and B(k) is a matrix of ~'.1
unknown parameters. The unknown elsments of c(k) and b

B(k) are denoted as O(k) with covariance matrix P(k). ey

These are repreasented by a discrete random model .:_-.:}

0(k+1) = AB(k) + v(k) (2.2) o

E(v(9)=0 and EGUIVI() WV &4 A N
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The measursment equation is
y(k) = x(k) + w(k) (2.4)

vhere
E(w(k)) = 0 and E(w(k)w'(j)) = W ék

3 (2.5)
BE(w)v'(j)) = 0

and x(k), y(k) being n dimensional vectors. The control
criterion to be minimized is the expected value of the
cost from step 0 to N

N
J(0) = E{c(0)} = E { x' (k) Qx(k)+ u'(k-1)Ru(k-1) }

k=l (2.6)
where N = 2 for the two step ahead criterion.

3. APPROXIMATE DUAL CONTROLLER FOR TWO STEP CRITERION

The minimization of (2.6) with respect to u(0) and
u(l) subject to (2.1) - (2.5) is obtained from the
Stochastic Dynamic Programming equation [12,13]
J*k) = min E{C(K)+I*(k+l) [YK} keN-1,...,1,0 (3.1)
u(k)

where J*(k) is the "cost-to-go" from k to N and * s

the cumulated information at time k when the control
u(k) is to be determined. For N = 1, (3.1) 1s

3*0) - ntn) E{x'(1)Qx(1)+u' (0) Ru(0)+3*(1) [Y°}  (3.2)
u(0

where J*(1) 1s the optimal cost at the last step and is
obtained by minimization of J(N-1) for N = 2. Assuming
diagonal Q = diag(ql) this results in (1,2]

~ P n
I*D) = "(DQe(D) + K RS (3.3
=]l

- ewem + ¥ ogrbon mrwem +
L1

. T artw + 117 (8 (Doe(n+ ;qLPL (1
=1 L1 ¢ B¢

and
a ~ n ~ PN
u*(1) = -[B'(1)QB(L) + tz th:(l) + n]'lln'u)Qc(x)
=1

n

L
+ I q,P, (1)) (3.4)
2=1 L Be

where
) A L
pc( 1) P cs(l)

Pl'(l) - (3.5)

L 4
Pp (D Pyl

P(1l) is the expected value of (9(1))2 for time
step 2 given measurement y(l) at time step 1. The in-
dex L is used to represent the row number in (2.1) and

(1) 1s the associated paramgter covariancs.

The paramater estimates 8(1) and covariances P(1l)
are obtained from the Kalman filter. Since W is diag-
onal one can decouple the estimation. Then

6hn) = atoem (D v, 3.6

ky(n = pXom (1 menrbonr () (.7

#w - o - xonmeko (3.8)

vl - #boa ey (3.9)
vhere

ve(1) = yy(0) - u(n 8o (3.10)

(D = [147(0)] (3.1

o' = [ey(D) 8,01, £1,2,...0 row of B (3.12)

.

As discussed in [1] and (2} J’Ql"u'n apnlinear
function of the paramster estimates 8(1). and covariancas
P(l) and thus a linearization was performed. In [1] o
scalar formulation was presented and a first order lin-
earization was performed about the nominal paramster
estimate squared (8(0))2 and nominal covariance F(1).
Also in [1,2] the vector case was presented and linear-
ization to first order performed. To more accurately
account for the dual effect s _second order Taylor Series
expansion is presented about 6(0) and_a first order ex-
pansion about the nominal covariance P(1). In addition
(as will be presented subsequently) the covariance P(l)
will include a linearization to second order in u(0).
In [1,2], P(l) was linearized to first order. It 1is
believed that linearizations to second order are neces-
gary to better account for the nonlinearity in P(l) and
(1) of (3.3) and in u(0) of (3.7) and (3.8). In adui-
tion a nonlinear Newton algorithm is used in the second
order approximation.

~ Linesrization of (3.3) about the nominal B(1)
= A6(0) and P(l) using the nominal u(0) results in

A * ~ -~
%) = 3*(, 80), B(D] + :’T(%l [8(1) - A8(0))

~ A * ~ -~
+ 316w - aso1* 23D Gy - a8
, 282(1)
n m m *
+ L [ 1§ QA

L =L
et ) -3 . an (3.13)
L1 =1 §=1 ®L (D) 1,3 1.3

where the superscript { represents the covariance matrix
associated with the £*} row of parameters and P 3D
is the i-j th element of the covariance matrix '
P(l), = being the number of unknown parameters.
Using (3.6) the expected value of (3.13) is
BLI*) [¥0) = J*01, 80, B(D))
*
+ -25 trl —Llaf" 12 (1) E{vIv () [Yolk' (D) ]
382(1)

20 &ta L =L

+ 33 T BA Gt gitar e
£ 1o 3=1 @y () P 9

Using (3.7), (3.8) and the innovation covariance
Blvy(1) vy(D) [v°) = mP@E ) + 1, (.15

(3.14) can be written as

E[I%(1) [¥0) = J*[1, 8(0), (1))

n n m : ]
+ L L I :-%—J—H-Q)-Efja)-_mi RO

L1 =1 §=1 39,(1) 28, (1)
-vf;] La [rf j(1)-1"f 3(1)1} (3.16)
’ aPi.j(l) ) » ’

The expected future cost (3.16). shown to be a
function of the predicted covariance Py 3(1) with &
aultiplier given b{ the sensitivity *

*
?ilSAL— .nd-a-waﬂ-l-Zr—— . Since the covariance

3?1.5 Q) 391(1) 301 (1)

Pf 1(1) depends on the control u(0) the control has the
»

dual effect. It should be noted that the importance of
the dual effect depends upon the sensitivity of the ex-
pected future cost with respect to both the covarisnce
and parameter estimate.

The optimal control u(0) can be co-!utcd by mini-
mization of (3.2) using (3.16). Since "1.,1“’ is non-

linear in u(0) a numerical search procedurs is required.
This is accomplished using a second order linearization
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in u(0).

"Thus (3.8) is linearized to second order about the
control ul(0), which is in the vicinity of the optimsl
control.

3

®7 ()

~bad -
3@+ | 1 @ @]
2.8
Py (1)
—3d— | -]
3 u“(0) ul(O)

The expected-future cost as given by (3.16) and
(3.17) is Tudrlt:lc in u(0) and thus a closed form
solution u®(0) is obtained by minimization of (3.2).

The optimal dual control u”(0) can now be computed
from (3.2) using (3.16) and (3.17). It is obtained by
solving (3.18)

L sL
Pi.ju) = Pt.

+ %[u(O) -ut(0) ] (3.17)

3‘?—0) Elx'(1)Q x(1) + u'(0)Ru(0) + J*(1)|Y°} = 0
The optimal u*(0) is thus

- P n
WO = (' OB + I Qg + Fp + 17
=1

P -~ n
(@00 + T (a7p(® + £p] (.19
vhere the matrix Fl, and the vector fl are
- 1(3:" 1 18t ;))
F,* L 1 -7Ll—-- —31
L g ? w2 a’%m 265D
L
®. (D
2 g
——;1— . (3.20)
%u(0) O .10),600),F1)

¢
I BN PYLle] 1 3 u.l)(ari (v
- ¢ I (¥ 1 —;z-‘—l Bk 7V b
t . 3-12(»“(1) 2 a?iu) 26,(1) ()

L
uI(O)) oA
u”(0) oe(o) ’P(l)

N (1)
u(0)

Initially the nominal value of u(0) is computed
from (3.19) with F¢ and fy equal to zero. Then a grad-
ient search is performed until in the vicinity of the
optimal u*(0). Then (3.19) - (3.21) are used until
convergence is achieved. This iteration procedure is
essentially Newton's method for minimization of a non-
linear function. The gradieant search is used because
the stochastic cost in (3.2) being minimized is a high
order nonlinear equation snd the gradient procedure is
used until ul(0) 1s in the vicinity of the minimum
before switching to the Newton method. The nominal
covariance BL(1) 1e computed from({3.7) - (3.11)) with
u(0) = u(0). The sensitivity (partials) in (3.20) and
(3.21) of the cost J (1) are colpzced from partial
derivatives of J*(1) (3.3) and PX(1) (3.7) - (3.9)
evaluated at the nominal. The partials of the covari-
ance are evalusted st ul(0) which is evaluated at the
previous iteration I.

The approximate two-step ahead dual control of
(3.19) - (3.21) can be interpreted as s modification to
the cautious controller by the terms Fp and fy. Thesa
terms depend upon the sensitivity of the fyture nominal
cost J*(1) with respect to the p.;roun (1) 8¢(1)
for all 1,j and their covariance (1) for sach row
L of parameters. Whenever these .hhtiviuu are
large the terms Fy and £; will be significant (that is
the dual effect will be important). Thus the sensiti-
vities take into account in the control solution the
sensitivity of the nominal future cost due to parsmeter
variation and uncertainty. The larger this sensitivity

ap
(3.21)

-
x(0)
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the more important will be the dual effect.

The resulting dusl controller (3.19) exhibits a
robustness property with respect to parameter varistions
and uncertainty of the future cost by including a ters
which appears in the denominator of the dual controller.
In addition, a probing term appears in the numerator.

4. SCALAR EXAMPLE WITH ONE UNKNOWM PARAMETER

To further understand the dual control solution a
scalar exsmple with one unknown parameter b is presented.
The approximate dual control solution for this scalar
case using Q = 1, R = 0, is given by (3.19) - (3.2))
with P, (1) and 6(0) being replaced by l’b(l) and b(0)
respech‘cly.

The partials required in the control law are

BJ* 1 czgzsoz
p¢D

R =2 2 (4.

_ ~
2 B.(1)-3b°(0)
Aa J*Ag],z - -2c2§b(1) Iza _ s (4.2)
(L) B |2 = (b (0)+P, (1))
b(0) .Pb(l) b
®, (1) 220w ul(0a (
el o -t 4.3)
u(0) I 2
WO e (o (@4d?
2
azrbu) 2 v-3 (0" (@ |,
RO RO |1 2O " ,F 9
(Pb(O)u (0)+¥W)
wvhere the nominal a(0) and ib(l) are
- b(0) ¢
0 = - ,T(J___ (4.5)
¢ b (0)+rb(0)
- aZPS(O)H
B (1) = > +v (4.6)
P, (03 (0)4

The paramster estimste b(0) and

using dats up to k = 0 (i.e. y(0)).
The expected future cost based upon ths linearfi-
zation of (3.16) 1s a2
!(J'(1)|Y°} el .22
B A O A oY)

LJ
- ar (0)-M) + g—bg} ¢, -F a0

4.1 Evaluation of the Cautious Controller

The performance of the cautious controller can be
evaluated using (3.2) with u(0) evaluated at the
nominal

30 = [EGEW 1) + BT PN g e300y

Pb(n) are computed

2. %
193 Q1
- ¢.Q)
T2y

4.7

(4.8)

The first term in (4.8) represents the expected cost at
k = 1 and the second term in (4.8) represents the ex-
pected future cost at k = 2 using the cautious control
at k= 2 (1.0, u(l)) and using the cautious control at
k*1 (1.0, u(0)=u(0)). (4.8) is evaluated using

data YO,
Using (4.1) - (4.7), (4.8) bacomss,
~2 2 ~2
2 b° [ 2 2 b."(0
J(0) = ¢ -az—m—i»c -¢ -.-z-—-(-)—
b°(0)+p, (0) b7(0)+2, (1)
2520y =2
2 & P, (0)u”(0)
e3dd . b (4.9)
a"(D Pb(ﬂ)u Q)+

LN N
" "'lf'ul'l:l

T Ty
A/ T W T

Tty

4

»
2

'

.
W,




The last term in (4.7) is sero since P, (1) evalu-
ated at the nominal control (i.e., cautious gontrol)
equals F, (). The first two terms in (4.9) represent
the average cost at atep k = 1 and the last three terms
represent the expected future cost at k = 2 using the
cautious coatrol.

A siople example can be used with (4.9) to demon-
strate vhen the cautious control is expected to behave
poorly.

Assune a scalar example with one unknown b para-
meter and let

b(0) = .05 , P(0) = .5, a=1.0
vV =.1 , W =_.,1,¢c=1

The expected cost at k = 1 and k = 2 is computed
from the nominal, u(0), Pb(l) and BZJ*S 1) which yields

(4.10)

20 w
- = *a
30 = -1, B (1) = 575, ;:E—S—l = -3.47  (4.11)
3h)
and
0 =+, e=1 (4.12)

Thus the cautious control applied at k = 0 results
in no reduction in the cost at k = 1 due to large un-
certainty P(1) and also no reduction in the future ex-
pected cost since u(0) is emall and no improvement in
parameter accuracy occurs at step k = 1,

4.2 Evaluation of the Dual Controller

The dusl controller of (3.19) - (3.21), (4.1) -
(4.6) can be evaluated by computing the average cost of
(4.8) using the covariance

aZpy,(0)W
p, (Ml (0w

Pb(l) - (4.13)
The expected future cost (4.7) reduces to

"2

SR T B S ()

b (0)+F, (1)
u*(O) b

2.2 *2
2 & a“P, (0)u “(0)

193 (Q b
*i—‘T_Ll —>

37 (1)

el ) [Y°)

P, (Ou"2(0)44

2.2 *2 2.2,..-2
) aJ*m a Pb(O)u () a Pb(O)u ()] (6.16)
P, (1)

P, (Ou" ) P, (02 (0)+w

and the total expected cost at k = 1 and k = 2 using
(4.8) s

%) = s{xz(1)|v°} + z{J'(1)|v°} (4.15)
* *
u (0) u (0)
where .
() IY°Y = &2 + 26(0)u*(0)c +
u*(0)
+ (b20) + P, (0)u"?(0) (4.16)

Examination of (4.14) shows that the dual control
can reduce the expected future cost over the cautious
control since éhe last_two expressions in (4.14) can be
negative if u “(0) > 44(0). Thus the dusl property
can have & dnipbh effect on the future cost.

The cost J (0) is computed using the scalar exam-

RSN OACMEUME RS Wil IO A ORI i et Suhel Pe £ A Sp LI QN hal el ol Ryt S A S

L] 2 % .
a1 AN
= .0075 , q}_(_?. . -3.47 ,
e O »()  [Gc0)=-.1
%, (D) Pp, (1)
= 38 s s = 41,0 »
3O |1 0ye-rt 220  [ul(0)=-.6
PL = 87 . fl = .85 (‘o 17)

The above sensitivities {4.17) were evaluated in
the vicinity of the optimal u(0) = ~.6 and P, (1)=.278,
The dual control u (0) using ul(0)= -.6, c=1 ¥s

T R () L - PN

(4.18)
b°(0) + Pb(O) + .87

The corresponding future expected cost using (4.14)

and (4.17) is
2 *2
2 * P_(0)u “(0)
N %LEJ_Q). _"-Q_
* »"(1) Pb(c)u (0)+w
u (0)

=442, ee (4.19)

The result of this example shows that the dual
control of (4.18) reduces the expected future cost to
442 of the original with no control. The cautious
control resulted in no reduction of the future cost.

The teras responsible for the improvement with dual con-
trol‘ are the second order sensitivities 321’512 and .
W w2(0)

»~(1)

The dual control of (4.18) differs from the cau-
tious control (4.11) by the terms Fp = .87 in the denom-
inator and fo = .85 in the numerator. The denominator
tern in effect provides more "caution" whereas the
numerator term is an additive probing effect. The term
Fp provides a "robustness"” property in that the sensi-
tivity of the future cost to parameter uncertainties as
they appear in the controller (i.s. d4(0)) sxe minimized.
Thus a new interpretation of the dual control is that it
contains robustness and learning (via probing). These
concepts are applicable to the multivariable dual con-
troller in (3.19) - (3.21). :

5. SIMULATION RESULTS

Performance was evaluated from 100 Mgnte Carlo
runs for the following controllers where b(0) was set
to b(0) with covariance P (0): 1) Cautious Controller
2) FOD 3) SOD

The above algorithms were tested for two cases:

a) Time varying case, b(0) = .05, Pb(o) =1.0,

V= ,1, ¢=10,W= .0l andW=_,1 a=~0.9
b) Congtant case, with b(0) = .05, Pb(o) = 1.0,

V=0, c=10,W= ,0l andW=,1 a=1.0

Example a

Table 1 summarizes the results of ths simulation
runs. All three algorithms were tested on this example
for two different levels of msasuremesnt noise covariance,
W= .01l andW=_.1l. 100 Monte Carlo runs were performed
each of 40 time steaps. For sach run, an average cost
was computed over 40 time steps and then tha averages
over 100 runs are tabulated in Table 1 and Table 2.
The tables clearly indicate that the SOD yields the
least cost. The dual effect shows a larger improvessnt
for larger measurement noise ({.e. W = ,1). Run numbers
7 and 14 of the 100 Monte Carlo runs were selected for

er" 1¥°}

plotting. The cost and parameter value are plotted in
ple previously discussed for the cautious controller. Pigures 1 through 4. It is evident that the second 0
A search procedure is used on (4.15) using (4.14) n:d order dual improves upon the other two on the average. SR
(4.16) with the parameter values from (4.10), and u*(0) Example b o
is iterated until in the vicinity of the minimum In this case the trus paramster was close to zero .:_.:1
yielding (1.e., b(0) = ,05) but constant., Table 2 summarizes v
the result. The average cost obtained by ths SOD is RS
‘ .
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. - much .lover than the other two.  The SOD always exhibited 13, Bertsekas, D. P., Dmamic Progrsmming and Stochas-
s excellent convergence whersas the other controllers per- tic Control, Academic Press, WY, 1976.

*- formed poorly. In addition the new controller consist- 14, Padilla, C. S. and Cruz, J. B., "Sensitivity Adap-
g ently avoided tum off snd burst [5). This was an iuw- tive Feadback with Estimstion Redistribution”,
portsnt common feature in all the Monte Carlo runs. 1EEE Trans. Automatic Control, Vol. AC-23, No. 3,
Runs 26 and 80 are plotted in Pigures 5 and 6 respect- June 1978.

ively, as typical examples. e -
The simulation study has shown that the new dual
controller improves upon the cost on the average. The

. magnitude of the improvement on the average appears to We,1, V.1, B=,05, P=1,0
"~ be relatively small for ths noiss levels used. However, Run Number 7

o5 the real advantage of the nev dual controller is the 1.5 Sumber

L improvement in those instances where the cautious con-

troller and the FOD [1,2] yields unacceptable results.

Although the FOD [1,2) shows improvement over the caut-
. ious controller, it has been found to be unacceptable
at many time points. 'I\

- 6. CONCLUSION 1.0

A new adaptive dual control solution based upon the
. sensitivity functions of the expected future cost has

been presented. This coatroller (SOD) takes into ac-

count the dual effect better by performing the second 5 l
order Taylor series expansion of the expected future : J
cost. The form of this controller is a modification of
the one step cautious controller. The FOD of [1,2] did

QoST

not have the denominator correction term like the pre-
sent one. This adds stability to the new control de- "\ !
- sign. Simulation results of a scalar model have shown 0. !
- the improvement obtained using the new dual algorithm. 0. 8. 16, 24, 32. &0.
REFERENCES TIME STEP
1. Bar-Shalom, Y., Mookerjee, P., and Molusis, J.A., Fig. 1. :l“"s:;;";o'l’, of Soot comparing
"A Linear Feedback Dual Controller for a Class of . Ller (3 snd the cautious
e Stochastic Systems," Proc. of National QVRS Collo~ contfo r (Time varying parameter
e quiun, Developpement et Utilisation D'Outils et case: Run Mo. 7 from 100
<. Modeles Mathemstiques en Automatique, Analyse de Moate Carlo Runs).

Systemes et Traitment du Signal, Sept. 1982,
Belle-Ile, FPrance.

2. Mookerjee, P., "The Control of Helicopter Vibration",
. M.S. Thesis, Dept. of EECS, The Univ. of Connecticut,
- Storrs, March, 1983.
~ 3. Feldbsum, A. A., Optimal Control Systems, New York: "
o~ Acadenic Press, 1965.
N 4. Bar-Shalom, Y., "Stochastic Dynamic Programming, 0. 8,
Caution and Probing", IEEE Trans. on Auto, Control, We,1, Ve,1, B=,05, P=1,0
AC-26, 1184-1195, 1981. ’ *
e 5. Wittenmark, B., "An Active Suboptimal Dual Control- 0.44 Run Number 7
- ler for Systems with Stochastic Parameters", Auto. -
b, Control Theory and Applicstions (Canada), Vol. 3,
pp. 13-19, 1975.

[
20 6. Goodwin, G., snd Payne, R., Dynamic System Identi- % 0.9
B
g
=

5 W RS

g )

fication: Experiment Design and Data Analysis,
Mathematics in Science and Eng., Vol. 136, Academic
Press, NY, 1977.
. 7. Milito, R., Padilla, C. S., Padilla, R. A. and
RN Cadorin, D., "Dual Control Through Innovations",
- Proc. of the 19th IEEE Conf. on Decision and Con-
trol, Albuquerque, N. Mex., Dec. 1980.
8. Mosca, E., Rocchi, S., and Rappa, G., "A Nev Dusl
Contxol Algoritha”, Proc. of the 1978 IEEE Conf. on
Decision and Control, San Diego, Jamn. 1979. 0. 8. 16. 24. 32. 4. For
9. Sternby, J., "A Regulator for Time Varying Stochas- TIME STEP
tic Systems”, Proc. of the 7th Intermational Ped- %I
. eration of Auto. Control World Congress, Helinski, Fig. 2. Time history of paramster .
e Finland, June 1978, for Run No. 7 from the 100 A

[}

o

.
Dl R B o

ey
! ",""..
salars

|

o 10. Tee, E., Bar-Shalam, Y. and Meier, L., "Wide-Sense Monte Carlo Buns ed C o
A Adaptive Dual Control for Nonlinear Stochastic (Time Varying Case). tion o
. Systems”, IEEE Trans. Auto. Control AC-18, 98-108, —_
o April 1973, ~ -

11. Bar-Shalom, Y. and Tse, E., "Concepts and Msthods By. -~
e in Stochastic Control”, in C. T. Lsondes (Ed) Distribution/ s
i Control and Dynamic Systems: Advances in Theo = s
N and Applications, Vol. 12, Academic Press, NY, 1976. Availability Cod~3 -]

S 12. Bellmsn, R., Dynamic P%r-nq Princeton Univ. s
', 7 » {1 LR
AT Press, Pun;.tcu. NI, 1957, ’Avail and/or -~

Dist Special Ry




. .. . ——— -

We.l, V=.1, B=.05, P=1.0

We,1, V=0, B=.05, P=1.0

L Run Number 14 L3 Run Number 26
T CAUTIOUS ‘ e CAUT10US
-------- FOD cecovewee  FOD
— - —— S0 ,\—.—— S0D
1.0 1.0
a A
w0
8 | I { £
\ 8
.5 5
| .
\
\
0. 0:
0. 8. 16. 24, 32. 40, 0. 8. 16. 24. 32. 0.
TIME STEP TIME STEP
Fig. 3. Time history of cost comparing Fig. 5. Time history of cost comparing
the SOD, FOD, and the cautious the SOD, FOD, and ths csutious
controller (Time varying parameter controller (Constant parameter
case: Run No., 14 from 100 case: HRun No. 26 from 100
Monte Carlo Runs) Mounte Carlo Juns).
“‘.1, V-.l, B-.OS, P=1.0 “..1, v..°. ’-.05. P=1.0
l_z.l Run Number 14 Ls Run Number 80
* i CAUTIOUS
----- FOD
0.7 \ ——a — 30D
!
: ]
g 0.21 1.0
o ~0,34 -
3
- 851
-0.8 :
-1.3 —pinery-
0. 8. 16, 24, 32, 40,
TIME STEP 0. d
Fig. 4. Time history of parameter 0. 8. I:IHE ::’BP 2. 4o0.
for Run No, 14 from 100
Monte Carlo Runs Fig. 6. Time history of cost comparing
(Time Varying -Case). the SOD, FOD, and the cautious
controller (Constant parameter
case: BRun No. 80 from 100
Monte Carlo Runs).
Measurement Measurement
Noise Covariance Average Cost Noise Covariance/c———r Ave; : go :t 3 3 0cd
W Cautious| First Order | Second Order W tious| First Order | Second Order
Dual Dusl Dual Dual
.01 475 .469 .458 .01 .109 .087 .069
.1 .623 .608 .514 .1 .359 .250 .162
Tasble 1. Average Cost for the three controllers on the Table 2. Average Cost for three controllers on the

time varying parsmeter model (b(0)=.05,
Pb(O)-l, V.1, c=1)

Constant Parameter Model (b(0)=.05, Pb(o)-l.

V=0,

cwl)
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